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Example: General 4x4 Convolution

00 | £01 | fO2 | O3 POO | PO1§1IPO2 | PO3

BF3
f10 | £11 1 f12 [ £13 BF1= P10 | PIL1}{iP12 | P13 =
f20 | £21 | £22 | 23 P20 1 P21 P22 P23
\ BF2= —=—“BF4
f30 | £31 | 132 | £33 P30 | P31} |{P32 X B2
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« Can be expressed ad 5 2x2’s

—s1*BF1+d1"P11 +s2*BF2+d2*P12+
s3"BF3+d3*P21+s4*BF3+d4*P22, or

—s1"BF1+s2"BF2+s3"BF3+s4*BF3+
d1*P11 +d2*P12+ d3*P21+d4*P22, or

~s1*BF1+s2*BF2+s3*BF3+s4*BF3+s5*BF5+d5*

P11
FIG. 5
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1
TEXTURE UNIT FOR GENERAL PURPOSE
COMPUTING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/633,062, filed on Dec. 8, 2009.

BACKGROUND

This relates generally to graphics processing and, particu-
larly, to the texture unit of a graphics processor.

A graphics processor is a dedicated processor that gener-
ally handles processing tasks associated with the display of
images. A graphics processor may include a number of spe-
cialized function units, including a texture unit. A texture unit
performs texture operations including texture decompression
and anisotropic filtering.

A texture sampler is a special type of texture unit that
optimizes texture filtering and performs texture filtering
faster than a general purpose processor.

The texture unit may do filtering using linear interpolation
units. In addition, other interpolation units, including bi-lin-
ear and tri-linear interpolation units, may be available.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic depiction of a texture unit according
to one embodiment;

FIG. 2 is a schematic depiction of one embodiment of the
present invention;

FIG. 3 is a depiction of a texture unit including program-
mable linear interpolation units for performing dot products
in accordance with one embodiment;

FIG. 4 is a flow chart for one embodiment of the present
invention;

FIG. 5 shows an example of a convolution according to one
embodiment;

FIG. 6 is a hardware finite state machine according to one
embodiment;

FIG. 7 is a timing diagram for a sequence state machine
according to one embodiment; and

FIG. 8 is a flow chart for generating and handling negative
coefficients according to one embodiment.

DETAILED DESCRIPTION

In accordance with some embodiments, a texture unit, such
as a texture sampler, may be utilized to perform mathematical
calculations and, particularly, in some embodiments, the cal-
culation of dot products. These tasks may be offloaded from a
central processing unit when the graphics processing unit’s
texture unit (a texture sampler) is not otherwise engaged.
Thus, processing efficiency may be improved in some
embodiments. In addition, in some cases, the calculation of
dot products and convolutions can be done using available
capabilities of existing texture units in the form of linear
interpolation, bi-linear interpolation, and tri-linear interpola-
tion filtering units.

Texture mapping is a computationally intense task per-
formed by dedicated hardware in a graphics processor. A
number of general purpose computing tasks, such as the
determination of a two-dimensional convolution for image
processing, matrix-matrix multiplication, and two-dimen-
sional lattice computation for finance applications must nor-
mally be completed using the general purpose processing
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unit, even if the texture unit remains idle. However, a texture
unit may be adapted to perform dot product calculations,
offloaded from the central processing unit when the texture
unit is otherwise idle.

Referring to FIG. 1, a texture unit core 40 of an interpola-
tion unit 14 receives a texture request via a texture control
block 42. The texture control block 42 may include a pointer
to texture surfaces, the width and height of the texture sur-
faces, the texture coordinates (u, v) for n pixels to be textured,
the type of filtering operation to be performed, such as linear,
bi-linear, or tri-linear, and the texture filter results.

An address generation stage 44 computes addresses of all
the texels used by a given filtering operation. The coordinates
u and v of the pertinent pixel are passed in normalized form
between 0.0 and 1.0. They are unnormalized by multiplying
them by a surface dimension. For example, u becomes i.bu,
where 1 is an integer and bu is a fraction. The integer portion
is used to produce nearest neighbors. In the case of bi-linear
interpolation, there are four neighbors: (i,j) (i+1,j) (1,j+1),
(i+1,j+1). In tri-linear filtering operations there are eight
neighbors. The fractional part may be used to calculate the
weights which may be used when blending the neighboring
pixels.

A data access stage 46 accesses all of the necessary neigh-
boring pixels. This stage may have a relatively long latency,
first in, first out buffer, to tolerate long latencies.

The filtering stage 48 performs linear, bi-linear, or tri-linear
interpolation of the neighbor pixels using a finite state
machine (FSM) sequencer. The filtering stage is implemented
in a tree of linear interpolation filters with three possible
coefficient inputs. The filtering unit may contain a number of
linear interpolators that are connected in a tree fashion to
perform bi-linear and tri-linear filtering.

Bi-linear filtering involves three linear interpolations on
two levels. Tri-linear filtering involves seven linear interpo-
lations on three levels. For bi-linear filtering, only one coet-
ficient (bu) is allowed for the first level and a second coeffi-
cient (bd) is used for a second level. With tri-linear filtering,
coefficients used for the first two levels as on the bi-linear
operations and the third coefficient (bw) is used for the third
level.

The general purpose or central processing unit may be
coupled to either a texture sampler or directly to an interpo-
lation unit. One system 10, referring to FIG. 2, shows a
general purpose or central processing unit 12 coupled to a
dedicated interpolation unit 14.

The general purpose processing unit may be a central pro-
cessing unit having one or more cores, a controller, or a digital
signal processor, to mention a few examples. In one embodi-
ment, the interpolation unit may be a texture unit, such as a
texture sampler, of a graphics processing unit. A dedicated
interpolation unit is hardware or software designed for inter-
polation using linear interpolation. Both the central process-
ing unit 12 and the interpolation unit 14 may be coupled to a
memory 16. The output of the central processing unit may
include general processing results, such as dot products.

When the central processing unit 12 is otherwise occupied
and the interpolation unit 14 is available, the interpolation
unit 14 may use its linear interpolation capabilities to perform
dot products operations offloaded from the central processing
unit 12 to the interpolation unit 14. Thus, the interpolation
unit 14, generally dedicated to graphics functions, such as
filtering and interpolation, may use its available linear inter-
polation capability to perform dot product calculations for the
central processing unit.

Referring to FIG. 4, originally, the central processing unit
12 sets up the (u, v) pairs for each pixel, as indicated in block
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26. Then the central processing unit triggers the texture opera-
tions, as indicated in block 28. A texture operation 30 is
performed in the interpolation unit 14. Then the central pro-
cessing unit gathers the results from the interpolation unit, as
indicated in block 32, and scales the output, as indicated in
block 34.

For ease in programming, a library function or application
program interface (API) may be used to simplify the pro-
gramming of the texture unit (TXS) to perform general pur-
pose processing. Two functions related to the general dot
product computation of a two input vector A and B (i.e., A dot
B=A0*B0+A1*Bl+...+An*Bn)is:

TXS-DP(int m,int n,Datatype_ ¢ t*4, Type* W Mask__
t__r*Mask, Type*result):

where m and n are the dimension of the dot product (DP), A
is one of the vectors to be multiplied, W points to the vector of
the coefficient normalized from the input vector B. A mask is
an array of bits, of type Mask_t which is used to handle
negative or degenerated coefficients, as explained herein. The
result of the dot product operation is returned in the result.
The vector A, the vector B and the result can be different types
of vectors, signified by Datatype_t data type, including char,
int, or float. While some of the dot product operation may be
performed in the texture unit, some parts may be performed
on the central processing unit.

As part of the computation, the vector B may be normal-
ized. A high level function or API may be utilized to facilitate
programming:

TXS_ LerpCoefTransform(int m,int »,float* B float* W,
Mask_ ¢ +*mask):
where B is the input vector, W is the normalized vector used
in the call to the texture unit. The function may also generate
a mask to handle negative or generated coefficients, with the
mask being another input to the texture unit call.

An example of the determination of dot products using
linear interpolation capabilities is a two-dimensional dot
product. However, the present invention is not so limited. The
way that a dot product calculation may be performed using
linear interpolation capabilities is as follows:

A simple 2-element dot-product has the form:

1
P-W:ZP;XW;
i=0

where P is a channel value and w is a coefficient. If we expand
this equation for the dot product (DP), DP=P0*w0+P1*w1=
(WO+w1)*lerp(w0/(w0+w1), PO, P1) (Formula 1).

This is readily mappable to the linear filter provided by the
texture sampler. The processor core needs to provide the (u,v)
coordinates to generate the w0/(w0+w1) coefficient correctly.
Scaling by the (wO+w1) factor can happen either on the
processor core, or on the interpolation unit or texture sampler
if they have support for such scaling operation.

Similarly, we can map 4- and 8-element dot-products to the
bilinear and trilinear filter operation. While there are many
ways to do this mapping, two embodiments of such mapping
are as follows. In the first embodiment, 4-element dot product
can be expressed using bilinear filtering as follows:

DPOy,_; ;=w00*P00+w01*P01+wl0*P10+
wl1*P11=s*BF(u,v,P00,P01,P10,P11)+d*P10,
where #=w01/(w01+w00),y=w10/(w00+w10),s=
((w00+w01)*(w00+w10))/(w00) and
d=(w00*w11-w01*w10)/((WwO0+w01)* (wO0+
wl0)).
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In the second embodiment, a 4-element dot product is
mapped to 2-level tree of linear interpolators (lerps) by recur-
sively applying Formula 1 to each pair of dot products
(1-level of lerps) and then to the resulting sum (second level
of lerps, in the following way:

DPO0go_;; =w00*P00+w01 *PO1+w10*P10+wl11*P11=
(w00+w01)*lerp(w00/(w00+w01),P00,P01 )+
(w10+wl1)*lerp(w10/(wl0+wl11),P10,P11)=
(w00+w01+w10+wl1)*lerp((w00+w01)/(W00+
w0l+wl0+w11),lerp(w00/(w00+w01),P00,P01),
lerp(w10/(w10+w11),P10,P11))

For larger dot products there are several ways to do the
mapping. With higher order interpolation units, such as tri-
linear, or even quadlinear, both embodiments described
above can be re-written more compactly to take advantage of
such units, to do 8-element, or even 16-element dot product.
For example, 8-element dot product for 2x4 quadrant can be
represented as 3-level tree of lerps by recursively applying
Formula 1.

In cases where the size ofthe product that can be performed
in hardware is less than size of the required dot product
operation, the full dot product may be partitioned into the sum
of smaller dot products, such that each such dot product is
done on hardware (for example, using one of the two pre-
ferred embodiments described above), using central process-
ing unit 12 or a texture sampler to add them all up.

For example, following chart illustrates how to compute a
16-element dot product, when only bilinear unit to do 4-cle-
ment dot product is available, using the embodiment above to
do the 4 element dot product:

POO PO1 P02 P03
P10 P11 P12 P13
P20 P21 P22 P23
P30 P31 P32 P33

Mathematically, a 16-clement dot product can be
expressed as: s1*BF1+s2*BF2+s3*BF3+s4*BF4+s5*BF5+
s6*P11, where, referring to FIG. 5, BF1 is bilinear filtering
operation for upper left quadrant (P00, PO1,P10,P11), BP2 is
the same for lower left quadrant (P20, P21, P30, P31), BF3 is
the same for the upper right quadrant (P02, P03, P12, P13),
BF4 is the same for lower right quadrant (P22, P23, P32,
P33), and BFS5 is the center quadrant (P11, P12, P21, P32).

The general procedure of mapping a general N-element dot
product to a tree of linear interpolators is set out below. Given
the list of N dot product weights (Win), or coefficients, the
procedure generates corresponding lerp weights (Wout) at all
levels of lerps. It also optionally truncates the bits of output
weights, in case the filtering unit has limited precision.

void GenWeights(float* Win,float™ Wout,int N)

{
int MaxLevel=ilog2(N);
for(int level=1; level <= MaxLevel; level++)
for(int s=0; s < Length; s+=(1<<level))
{
int beg=s, end= s+(1<<level)-1;
int halfway=beg+(end-beg)-1;
Wout[level, beg,end]=Sum(Win, beg, halfway) /
Sum(Win, beg,end);
if( limited__precision == true)
truncatebits(Wout[level, beg,end]);
¥
¥
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It is not desirable to deal with linear interpolation coeffi-
cients that are either not defined or negative. For example,
suppose that a 1x2 dot product is PO-P1. In this case, the
linear interpolation coefficient is not defined due to division
by zero. Another example is the dot product PO-2*P1. In this
case, the coefficient is negative (1/(-1)). Passing a negative
coefficient to the linear interpolation unit may not work dueto
the fact that the linear interpolation unit only expects positive
coefficients.

To avoid both of these constraints, whenever the dot prod-
uct coefficient is negative, its sign may be changed. To com-
pensate, the sign of the corresponding P or channel value may
be reversed during the filtering operation. To compensate for
the sign change, a control mask is passed for each of the texels
with a negative coefficient to the texture control block. The
mask being zero means that the corresponding coefficient is
positive in one embodiment. A mask of one means that the
corresponding coefficient is negative and signals the appara-
tus to reverse the sign of the texel data in one embodiment.
However, all that matters is that the mask values for positive
and negative coefficients be distinguishable. For example, in
the case of PO-2*P1, change (-2) to 2 to get PO+2*P1. This
results in the linear interpolation computation: 3*lerp(Y3,
PO, -P1), where lerp is the linear interpolation.

The sign of P1 is flipped to compensate for the sign change
in its coefficient. Referring to FIG. 8, in block 70 and step 1,
the coefficients w0 and w1 are received and it is determined
that coefficient w1 is less than zero or negative. In step 2, awl
is set equal to wl', as indicated in blocks 72 and 74 on the left
and right sides. In step 3, on the left side, PO and P1 are loaded
in block 76 and the same thing is done at the right side in block
78. Then, in step 4, P1 is set equal to P1' on the left side in
block 80 and negative P1 is set equal to P1' on the right side in
block 82. Next, in step 5, the lerp scale is defined as s=(w0+
w1"), as indicated in block 84. The lerp coefficient is defined
as c=w0/(w0+w1), as indicated at block 86. Finally, in step 7,
as shown in block 88, PO*w0+P1*w1 is set equal to c*lerp (c,
PO, P1), as indicated in block 88.

The sequence described above can be implemented in soft-
ware or hardware. In a software embodiment, it may be
implemented by computer executable instructions stored, for
example, in the memory 16 and executed by the central pro-
cessing unit 12 of FIG. 2. Thus, a computer readable medium
may be the memory 16 and the computer may be imple-
mented by the central processing unit 12.

Thus, it is possible to map 2, 4, and 8 element dot products
into a maximum of three levels of linear interpolation.

For any application that involves texture unit kernels, such
as n-element dot products, one can rewrite it using the avail-
able library of linear interpolation calls.

The main code is still executed on the general purpose
processor core and the library functions are partially executed
on the partially core and partially executed on the texture unit.
The part of the library function that executes on the processor
core involves (1) setting up and (2) initiating the communi-
cation between the core and (3) the texture unit and accumu-
lating immediate results for final output.

These essentially are the three main overheads related to
the texture unit scheme. The performance gain from the algo-
rithm may be offset by these offsets. If these three steps are
implemented using dedicated hardware of the texture sample,
these overheads may be reduced and may achieve higher
performance, in some embodiments.

One application of some embodiments is the determination
of two-dimensional convolutions. This is a common opera-
tion in image processing and many scientific applications. A
two-dimensional convolution may be implemented using two
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texture unit (TXS) functions, including a transform that trans-
forms a convolution filter coefficient into the required nor-
malized filter values and a function that performs the actual
convolution. For an input image of size NxN and kxk filter,
the two-dimensional kernel is as follows:

Input: Inputlmage[i][j] of size N x N
Filter: Filter[m][n] of size k x k
TXS__ LerpCoeffTransform(k, k, &Filter[0][0],
&Filter_ Lerp[0][0], &mask[0][0]);
for(i=0; i <N; i++)
for(j=0; j < N; j++) {
TXS_DP(k, k, &Filter_Lerp[0][0], &InputImage[i][j],
&mask[0][0], &result);
OutputImage[i][j] = result;
¥

A call to the transform takes original filter coefficients and
converts them into linear interpolation coefficient form. For
each image pixel, input image [i][]], convolution is performed
using the transformed filter_lerp.

As the dot product is offloaded to the texture unit, the
processor core is now free to perform other operations.

Note thata call to setup coeflicients TXS_LerpCoeffTrans-
form to transform a convolution filter coefficient into the
normalized filter values introduces some overhead. However
this overhead is amortized over multiple usages of such val-
ues, which is certainly the case with dot product. It is also
possible that there may be a more general filtering which does
not use transformation of such coefficients, in which case
there will be no call to TXS_LerpCoeftTransform, and hence
no further overhead.

Another example is matrix multiplication. Again, two
graphic texture unit functions are used, including the trans-
form function that transfers a row of one matrix into a texture
unit required coefficient format and the function that per-
forms the dot product to a column of another matrix. The
following code may perform the calculation C=A*B, where
matrices A, B, and C are square matrices of dimension N.
These matrices may be of any type including char, short, int,
or float.

for(row=0; row < N; row++) {
TXS__LerpCoeffTransform(1, N, A[row], RowAlerp, mask);
for(column=0; column < N; column+=4) {
TXS_DP(1, N, RowAlerp, &B[0][column], mask,
&result); for(c=0; ¢ <4; c++)
C[row][column+c]=result[c]

Each row of the matrix A may be transformed into the
vector of the linear interpolation coefficients, RowALerp.
RowALerp is then used to perform a dot product with every
column of the matrix B, B[ *][column]. The result of a single
call to the dot product function is four elements of C. Each call
to the dot product function computes four consecutive ele-
ments of C: C[row][column], C[row][column+1], C[row]
[column+2], C[row][column+3].

Still another example is the determination of the two-di-
mensional binomial tree lattice. This may be used in compu-
tational finance to numerically solve a partial differential
equation that describes market dynamics over time. The two-
dimensional lattice shows the value of a tradable element
whose value is dependent on the price of two random vari-
ables, such as a bond in a foreign currency whose value is
dependent on the bond value in the foreign exchange rate. At
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each time step, the two-dimensional lattice may be traversed
with a 2x2 window using four neighboring cells to computer
the expected price in the next time step:
bCurtlji] [j2]=P1*vPrev[j1+1][/2+1]+P2*vPrev[j1+1]
[2]+P3* Prev[1][/2+1]+P4*vPrev[i1][/2].

A typical problem starts with 2000x2000 lattice. With such
a lattice, there are 1999x1999 2x2 windows. The 1999x1999
set of results forms the lattice of the next iteration. Compu-
tation may continue until there is one item left in the lattice.

P1, P2, P3, and P4 are constants throughout the iterations
and can be computed in advance. They are positive and non-
zero for all practical problem parameters. The basic operation
with the 2x2 window reduces to a weighted sum computation
with constant coefficients that match well into the linear
interpolation computation on the texture sampler.

In some embodiments, the operation that performs the dot
product may be implemented in software or firmware. In such
cases, a computer may be controlled by computer executable
instructions stored on a computer readable medium such as a
semiconductory memory. In other embodiments, the opera-
tions may be implemented entirely in hardware and, in still
other cases, combinations of hardware and software may be
utilized.

Referring to FIG. 3, independent inputs may be provided to
each linear interpolator (Lerp) 20 in a linear interpolator tree
to effectively compute a 2, 4, or 8 element dot products with
the available linear interpolation functions, without any spill-
over computation in some embodiments. The additional stor-
age needs may be small in some cases, such as eight 32 bit
locations for 32 bytes total. Additionally, a 32 bit multiplier
22 may be used. A programmable coefficient storage 18 may
store the coefficients that are needed by the linear interpola-
tors and provide them through a multiplexer 24 to each linear
interpolator 20. In addition, a scaling factor may be provided
to one input of the multiplier 22.

In some embodiments, the linear interpolator coefficients
18 may be programmed directly by a programmer. Coeffi-
cients 18 are derived for 8-element dot product using recur-
sive application of formula 1. To save space, only the final
result is shown below, wherein coefficients 18 come from
coefficients of the lerps below:

WORPO+W1*P14+w2* P24 w3*P3+wd* PA+w5*P5+
wo*Po+wT* PT=(wO+wl+w2+w3+wid+w5+w6+
w)lerp((wO+wl+w2+w3)/(wO+wl+w2+w3+wi+
w5+w6+w7)lerp(wWO+w1)/(wO+wl+w2+w3),lerp
(w0/(w0+w1),P0,P1),lerp(w2/(w2+w3),P2,P3)),

lerp((wA+wS5)/(wA+w5+w6+w7),lerp(wad/(wa+
w5),P4,P5), lerp(w6/(w6+w7),P6,P7)))

A finite state machine sequencer may be added to the
texture sampler to enable the texture sampler to handle any
mxn-element dot product in the form of:

s

I
=3
.
i
=3

wij* Pij

The sequencer can be implemented in software, hardware
or a combination of both. The sequencer may break up the
mxn dot product into a combination of 2-, 4- or 8-element dot
product operations. It then cycles through the dot product
operations and accumulates for the final output. An oddly
sized dot product can be padded to the next even size dot
product so that it can be effectively broken up into a 2-, 4- or
8-element dot product.

A software sequencer may use the processor core 40 (FIG.
2) to execute the two main steps of setup and accumulation.
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The setup step may involve breaking W={w}ij into a
sequence of basic 1x1, 1x2, 2x2 or 2x4 sub-blocks, and
transforming each block into the form of lerp coefficients as
shown above. The accumulation step may involve performing
a basic convolution using transformed coefficients and some
1x1, 1x2, 2x2 or 2x4 region of the array, P. It may create a
corresponding texture control block, launch each sub-block
to the texture sampler, and accumulate the returned values
into the final result. The following pseudo code illustrates one
possible implementation for each of the two main steps:

// Setup step
for(i=0; i < m; i+=2)
for(j=0; j <n; j+=4)

basicW = min(2, m-i);

basicH = min(4, n—j);

get basic subblocks: W(i:i+basicW, j:j+basicH]
generate lerp coefficients + scaling factor

and store them to W[i:i+basicW, jij+basicH]

Hw

// Accumulationstep

set result to 0;

for(i=0; i < m; i+=2)
for(j=0; j <n; j+=4)

1. basicW = min(2, m-i);

2. basicH = min(4, n—j);

3. specify sample point S within P[k:k+basicH,
L:l+basicW]

4. create texture control block (TCB) based on
W(ii+basicW, jij+basicH]
and S and launch texture request

5. wait for request to return the intermediate
value

6. accumulate intermediate value into result

A hardware implementation, as shown in FIG. 6, can elimi-
nate the overhead involving the processor core for the accu-
mulation step. The implementation may include a set up unit
50, coupled to a finite state machine 52. An address genera-
tion unit 54 provides addresses to a data access unit 56
coupled to a memory 58.

One possible implementation of a hardware sequencer
involves three pieces of logic. A small finite state machine 52
next to a filtering unit 62 generates texture requests for each
sub-dot product computation and feeds them to the texture
pipeline. The filter unit 62 may receive selected program-
mable coefficients from storage 60. A few small buffers 64 at
last stage of filtering unit 62 use as an inputs data for the next
level of LERPs. Scaling unit 66 performs multiplication of the
final result by the scaling factor (e.g., wO+w1+w2+w3 in case
of 4-element dot product). Other hardware as well as hybrid
software/hardware implementations may also be used.

To further understand the hardware sequencer operation,
consider an example which computes a 4x4 dot-product.
Since the largest dot-product the filtering unit can perform, in
one embodiment, is an 8-element dot product, the 4x4 dot-
product may be broken up into two 8-element dot products.

Two 4x4 matrices A and B may be broken up into two 2x4
sub-matrices AO/A1 and BO/B1. The hardware sequencer first
computes the 8-element dot-product of AO and BO then accu-
mulates it with the 8-element dot-product of Al and B1. A
timing diagram (FIG. 7) illustrates such an operation at
sequences of times 0 through 6, stages 1 through 3, using a
two-entry buffer 64 and a scaling unit 66.

In this example, the hardware sequencer finite state
machine 52 issues the 8-element dot product (A0.B0) and
(A1.B1) to trilinear filter unit’s 3-stage pipeline. When the
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output of A0.BO comes out of the 3-stage pipeline at time 2, it
is saved in the first entry of a 2-entry buffer. When the output
of (A1.B1) arrives at time 3, it is saved into the second entry
of'the 2-entry buffer. In time 4, the finite state machine takes
the outputs and feeds them back to the filter unit 62 to perform
alinear filter (which would only take one cycle). In time 5, the
combined output (A0.BO+A1.B1) from the filter unit is then
fed into the scaling unit to perform the final scaling. At time 6,
the 4x4 dot-product between matrix A and B is completed and
returned back to the processor core.

The graphics processing techniques described herein may
be implemented in various hardware architectures. For
example, graphics functionality may be integrated within a
chipset. Alternatively, a discrete graphics processor may be
used. As still another embodiment, the graphics functions
may be implemented by a general purpose processor, includ-
ing a multicore processor. While linear interpolation is
described herein, other forms of interpolation can also be
used.

References throughout this specification to “one embodi-
ment” or “an embodiment” mean that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one implementation
encompassed within the present invention. Thus, appearances
of the phrase “one embodiment” or “in an embodiment™ are
not necessarily referring to the same embodiment. Further-
more, the particular features, structures, or characteristics
may be instituted in other suitable forms other than the par-
ticular embodiment illustrated and all such forms may be
encompassed within the claims of the present application.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.

What is claimed is:

1. A method comprising:

determining that a dot product coefficient is negative and

changing the sign of the coefficient to a positive value;
sending the positive value to a linear interpolator;
indicating whether the interpolator should revise the sign
of the resulting dot product texel data; and
using the programmable linear interpolator, that does not
accept negative coefficients, to calculate the dot product
and to convert the sign of texel data in the dot product.

2. The method of claim 1 including using a finite state
machine sequencer to handle any sized dot product.

3. The method of claim 2 wherein said state machine breaks
up a larger dot product calculation into more than one smaller
calculations.

4. The method of claim 3 including breaking a sequence of
dot product calculations into sub-blocks and transforming
each sub-block into linear interpolation coefficients.

5. The method of claim 2 including using a software
sequencer finite state machine.

6. The method of claim 2 including using a hardware
sequencer finite state machine.

7. The method of claim 1 including compensating for the
sign change of the dot product coefficient by reversing the
sign of the corresponding channel value during a filtering
operation.

8. The method of claim 1 including compensating for the
sign change by passing a control mask for each of the texels
with a negative coefficient to a texture control.
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9. The method of claim 1 including mapping a general
N-element dot product to a tree of linear interpolators.

10. An apparatus comprising:

a processing entity;

a memory coupled to said processing entity; and

a programmable linear interpolator coupled to said pro-

cessing entity, wherein said programmable linear inter-
polator does not accept negative coefficients;
said entity to determine that the dot product coefficient is
negative and to change the sign of the coefficient to a
positive value, send the positive value to a linear inter-
polator, and indicate whether the interpolator should
revise the sign of the resulting dot product texel data; and

said interpolator to calculate the dot product and to convert
the sign of texel data in the dot product based on an
indication from said entity.

11. The apparatus of claim 10 including a finite state
machine sequencer to handle any sized dot product.

12. The apparatus of claim 11 wherein said sequencer to
break up a dot product into a combination of smaller dot
product operations.

13. The apparatus of claim 12 wherein said sequencer to
cycle through the dot product operations and accumulate a
final result.

14. The apparatus of claim 12 wherein said sequencer to
pad an odd sized dot product to the next even sized dot
product.

15. The apparatus of claim 14 wherein said processing
entity to execute a set up and accumulation operation, said set
up operation to break coefficients into sub-blocks.

16. The apparatus of claim 13, said processor to implement
an accumulation step by performing a convolution using the
transformed coefficients from said set up step.

17.The apparatus of claim 16 wherein said sequencer finite
state machine includes a filtering unit, said finite state
machine to generate texture requests for each sub-dot product
computation and to feed them to a texture pipeline.

18. The apparatus of claim 14 including a scaling unit to
perform multiplication of the final result by a scaling factor.

19. The apparatus of claim 12 wherein said finite state
machine sequencer to generate interpolator requests for each
sub-dot product computation and to feed them to the interpo-
lator.

20. The apparatus of claim 10, including a tree of linear
interpolators, a general N-element dot product mapped to said
tree of linear interpolators.

21. A non-transitory computer readable medium storing
instructions to enable a computer to:

determine that a dot product coefficient is negative and

changing the sign of the coefficient to a positive value;
send the positive value to a linear interpolator;

indicate whether the interpolator should revise the sign of

the resulting dot product texel data; and

use the programmable linear interpolator, that does not

accept negative coefficients, to calculate the dot product
and to convert the sign of texel data in the dot product.

22. The non-transitory computer readable medium of claim
21 further storing instructions to compensate for the sign
change of the dot product coefficient by reversing the sign of
the corresponding channel value during a filtering operation.

23. The non-transitory computer readable medium of claim
21 further storing instructions to compensate for the sign
change by passing a control mask for each of the texels with
a negative coefficient to a texture control.
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